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Abstract

Free jets represent a benchmark for research into the physics of turbulent fluid flow and are furthermore of great interest for
many engineering applications. In the present work we investigate the influence of the Reynolds number on the evolution of a plane
jet. The effect on the global jet characteristics, as well as on some spectral properties, is particularly addressed. A strong influence on
the jet evolution is found for Re < 6000, but also that the jet is close to a converged state for higher Reynolds numbers. Although it is
believed that the jet reaches a universal self-similar state, there was early evidence that the inflow conditions can have a downstream
effect on the development of the turbulent flow field. Therefore some results, concerning the influence of inflow boundary conditions

on the simulations, are also reported.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Free jets represent a benchmark for research into the
physics of turbulent fluid flow, because they are used for
the evaluation of physical models. Furthermore they are
of great interest for many engineering applications (jet
propulsion, combustion chambers, etc.). Therefore tur-
bulent jets have been the subject of many experimental
and numerical works for over 40 years. For the axi-
symmetric jet the very extensive measurements of
Wygnanski and Fiedler (1975) have been the standard
round jet data for a long time. Later it was discovered
by using numerical methods that the far field data of
Wygnanski and Fiedler have not satisfied the constraint
of the integrated axial momentum equation and that this
discrepancy has been due to the semi-confined enclosure
(Hussein et al., 1994). Nearly two decades later detailed
measurements with more suitable measurement tech-
niques have been carried out (Panchapakesan and
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Lumley, 1993; Hussein et al., 1994). In contrast to the
round jet, according to Bonnet et al. (1998), detailed
results newer than those from Gutmark and Wygnanski
(1976) (denoted GW in the following) are not available
for the plane jet, but in view of the above mentioned
findings for the axisymmetric jet, the data of GW must
be also cast in doubt.

There is little work about free jets at moderate Rey-
nolds numbers, although it is for several reasons inter-
esting to study the influence of the Reynolds number on
the evolution of a plane jet. First the Reynolds number
dependence might be a possible explanation for the large
scatter in the experimental data. Secondly, experimental
data or DNS data is frequently used for calibration,
development and examination of turbulence closures
models, which contain often no Re-dependence. There-
fore Reynolds-dependant data could be useful (1) for
determining the range where these models can be valid
or (2) alternatively provide necessary information for a
model refinement. From this point of view it is of great
importance to be able to predict very well the flow field
evolution and the distribution of the mixing field in such
a configuration.

An overview of the computational studies concerning
this flow can be found in the work of Stanley et al.
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(2002), who published a study of the flow field evolution
and mixing in a planar turbulent jet at Re = 3000, using
DNS. The inflow conditions were generated by a pro-
cedure based on inverse Fourier transform.

Based on a newer method of generating realistic in-
flow conditions presented in Klein et al. (2003), the
present work extends previous simulations by varying
the Reynolds number.

In the following section we recall the governing
equations and the numerical technique needed for the
simulations. After that the new method of generation of
artificial inflow data is summarized in Section 3. In the
main part of the paper (Section 4) we then discuss
computational and physical aspects of the plane jet.
Starting with the influence of the inflow conditions, we
proceed with the far field results of the jet and present at
the end of the section some results reflecting the effects
of Reynolds number variations. Finally some conclu-
sions will close the paper.

2. Governing equations and numerical technique
The governing equations for the problem to be in-

vestigated here, are the conservation equations of mass
and momentum in their instantaneous, local form:
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The incompressible Navier—Stokes-equations are solved
by using a finite volume technique on a cartesian mesh.
The variables are located on a staggered grid. For spa-
tial discretization central differences are used. Temporal
discretization is an explicit third order Runge-Kutta-
method. The Poisson equation is inverted by using a
direct fast elliptic solver.

The turbulent plane jet is simulated with a Reynolds
number Re = UpD/v in the range from 1000 to 6000,
where U, denotes the bulk velocity at the inlet, D the
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Fig. 1. Sketch of the flow.

nozzle width and v the kinematic viscosity. A sketch of
the flow can be seen in Fig. 1 together with the definition
of the jet half-width z;/, and the centerline velocity Uy.
The extension of the computational domain in axial (x),
homogenous (y) and vertical (z) direction is 20D x 8D x
20D. The spanwise box size was estimated a priori using
the experimental data of GW

Z1/2 ~ OID7 Lx/Zl/2 =047 (3)

yielding an integral length scale at the outflow plane of
approximately 1D. Therefore the spanwise box size
should be large enough to capture even the largest
scales. This is confirmed a posteriori in Fig. 2(left).
Compared with the computational box of Stanley et al.
(2002) we added some safety overhead.

The computational domain is resolved with 360 x
128 x 512~23.4 x 10° grid points. In vertical direction
the region —4.5<z/D < 4.5 is resolved with 50 cells per
diameter and the grid is stretched at the lateral bound-
aries. In x and y direction the grid is equidistant. This
yields in the “core” region a resolution of Ax/D = 1/18,
Ay/D =1/16 and Az/D = 1/50. The finer grid spacing
in z direction is required to resolve well the shear layer,
especially in the near nozzle region. The same grid is
used for all simulations in order to be able to use exactly
the same inflow data. Because we performed not only
one DNS but several parameter variations, we had to
reduce the amount of stored data (the complete velocity
and pressure field for one time step takes in single pre-
cision 378 MB of memory). Therefore we are not able to

T
U/JU

iU
1 —10.02
0.5 —10.01
0 | Il| | | 0
-1.5-1-050 05 1 1.5

z/D

Fig. 2. Autocorrelation functions in homogenous direction at the last axial position (x/D = 15) which is used for evaluation (left). Inflow profiles for

mean velocity and mean velocity fluctuations (right).
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estimate the complete dissipation tensor. Using the iso-
tropic assumption &= 15v(0u//0x)> we obtained for
Re = 4000 the estimate #,,;,/D = 0.008 at x/D ~ 7. The
values for all other cases can be found using the proper
Reynolds number scaling law, where it has to be men-
tioned that the maximum dissipation occurs closer to the
nozzle, the higher the Reynolds number. Our findings
agree astonishingly good with the results of Stanley et al.
(2002), where the full dissipation tensor is evaluated.

The simulations are performed for 13 flow through
times based on an averaged axial centerline velocity. All
statistics are taken over 10 flow time units. The CPU
time for one simulation is approximately 800 h on an
Intel P4.

At the outflow, Neumann boundary conditions for
the velocity and the pressure are prescribed, negative
velocities are clipped. According to our experience, no
notable difference can (in this case) be seen between the
results obtained with Neumann boundary conditions
and the results obtained with a convective outflow
condition. Because the convective outflow condition
yielded furthermore stability problems for the first time
steps, where the flow had not reached a statistically
stable state, we used simply Neumann boundary con-
ditions. Setting the pressure to zero at the top and the
bottom boundaries and interpolating the tangential ve-
locities constantly allows for mass entrainment. Periodic
boundary conditions are applied in the homogenous
direction. At the inflow boundary the velocity is set to
zero outside the nozzle. Thomas and Goldschmidt
(1986) report that the velocity profile in the near nozzle
region is closely approximated by a hyperbolic-tangent
profile. For this reason inside the nozzle the mean ve-
locity profile has been chosen according to

U() U() —|Z|+05D - T
7*7”‘“‘1(T’ =w=0_®

where 0 is the momentum thickness and has been set to
D/20 as in Ribault et al. (1999). Because no reliable
information about the profile of the velocity fluctuations
close to the nozzle was available we used simply a top-
hat profile with

Vit Uy = 70 Uy = Vww [ Uy = 0.02. (5)

The inflow profiles are also plotted in Fig. 2(right). In
contrast to Stanley et al. (2002) the fluctuations have
been generated by a new procedure presented in Klein
et al. (2003). For the self-consistency of this paper, we
summarize the method in the next section.

U:

3. Generation of artificial inflow data

In the following we provide only a short introduction
to the generation of inlet data for spatially developing
simulations. For more details see e.g. Lund et al. (1998),

Stanley and Sarkar (2000), Klein et al. (2003) and Glaze
and Frankel (in press).

The conventional way to generate turbulent inflow
data is to take a mean velocity profile with superim-
posed fluctuations. Using the numerical technique de-
scribed in Section 2, a simulation of a plane jet at
Reynolds numbers varying in the range from 1000 to
6000 has been performed in Klein et al. (2000). Al-
though the results compared well with experimental data
for self-similarity profiles, the jet spreading rate was
under-predicted by approximately 20%. The most
probable reason for this discrepancy seemed to be the
influence of non-realistic inflow conditions.

In Fig. 3 we compare the axial evolution of the lon-
gitudinal velocity fluctuations from three simulations,
which differ only in the inflow boundary conditions. A
mean velocity profile from a channel flow simulations
has been used with superimposed (1) zero fluctuations,
(2) random fluctuations and (3) fluctuations from an
external channel flow DNS.

It can be observed that due to a lack of energy in the
low wave number range, the pseudo turbulence is im-
mediately damped to zero, and the result is identical
with a laminar inflow. Therefore this procedure is
completely wrong. This explains a certain independence
of the fluctuation level on the simulation results, when
using ‘white noise’ fluctuations. In consideration of this
fact the choice of laminar inflow conditions seems to be
superior to the random fluctuation approach. Addi-
tionally if an iterative solver is used, the number of it-
erations can be reduced dramatically (see for example
Mengler et al., 2001). The use of real turbulence, e.g.
from an auxiliary simulation, at the inflow shows a
complete different behavior. In this case the fluctuation
level is maintained and increases up to the end of the
potential core where the shear layer has penetrated into
the jet up to the centerline. Unfortunately the spreading
rate remains still considerably under-predicted.

As we have seen the direct numerical simulation of a
plane jet requires an elaborated method for producing
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Fig. 3. Influence of conventional inflow boundary conditions on the
simulation of a plane jet. Comparison between inflow with zero fluc-
tuations, random fluctuations and fluctuations from an external
channel flow DNS.
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realistic inflow data. It is very difficult to specify the
meaning of good inflow data, but a simple approach is
to produce a velocity signal which has certain statistical
properties, which may for example be known from ex-
perimental data. Such quantities could be: mean values,
fluctuations and cross correlations, higher order mo-
ments, length and time scales, energy spectra, etc. Klein
et al. (2003) developed a method which can be splitted in
two parts.

1. First a provisional three-dimensional signal %; is gen-
erated for each velocity component which possesses a
prescribed two-point statistic (length scale, energy
spectra). If there would only be the need to obtain
homogenous turbulence the procedure could stop
here.

2. If cross correlations between the different velocity
components have to be taken into account a method
proposed by Lund et al. (1998) can be used. First de-
fine %; so that %; = 0, %% ,; = &;; and then perform
the following transformatlon u; = u; + a;;%;, where

(Riy)"? 0 0
Ry 1/2
— Ryy — 0
(a;) = ap (R a21)
R31 (R32 — azias)

2 1/2
(Rs; —az) — a32)
ap an

Here (-) denotes an appropriate averaging procedure,
R;; the correlation tensor which may be known from
experimental data and u; the finally needed velocity
signal.

A method for the solution of part 1 has first been
proposed by Lee et al. (1992). The idea is based on an
inverse Fourier transform but has, according to our
opinion some disadvantages which will be overcome by
the new method based on digital filtering of random
data, following the work of Nobach (1997).

Guideline for the development was the practicability,
which means that only statistical quantities should be
used which can be obtained with reasonable experi-
mental expense, or alternatively from heuristical esti-
mates. Therefore correlation functions respectively
length scales seem to be an adequate alternative to a
three-dimensional energy spectrum.

In order to create two-point correlations, let r,, be a
series of random data with 7, = 0, 7,7, = 1, then

Z b rnz+n (6)

n=—N

defines a convolution or a digital linear non-recursive
filter. The b, are the filter coefficients and N is connected
to the support of the filter. Because 7,7, = 0 for m #£ n it
follows easily

umuerk

T zN:ch bk Z b’ (7)
that means a relation between the filter coefficients and
the autocorrelation function of the u,. Two questions
have to be answered: How can this procedure be ex-
tended to three dimensions and how is it possible to
invert formula (7). By the convolution of three one-di-
mensional filters one obtains a three-dimensional filter
that answers the first question:

bijk = bi : bj : bk (8)

To find an answer to the second problem, lets suppose
an autocorrelation function is given, i.e. Wpllyit/Umlin-
Then it is possible to obtain the coefficients b, by a
multidimensional Newton method. The procedure can
be taken from a standard textbook and needs no further
comment.

In contrast to the knowledge of the full autocorrela-
tion function one has often an intuitive feeling for the
length scale of a flow. Therefore we propose a further
simplification, which is especially preferable from an
engineering point of view: instead of R,,(x,r), where r
denotes a distance vector and » = |r|, only an integral
value, the length scale, should be prescribed. This im-
plies the assumption of a special shape of R,,. For the
case of homogeneous turbulence in a late stage, it can be
shown (Batchelor, 1953) that the autocorrelation func-
tion takes the form

2
R,.(r,0,0) = exp ( — g %)

(with L = L(£) = \/2m(t — 1)) 9)

This choice fulfills some basic properties like R,,(0) = 1,
lim, . R,,(r) =0, and allows an easy calculation of the
length scale. In particular an explicit representation of
the filter coefficients has been found. Suppose Ax is the
grid spacing and L = nAx the desired length scale, then
we can set

4 (nAxy

:ﬁp(_gg) (10)

with the filter coeflicients

v 12
bkzl;k/<zgjz> and
=N
- T k?
bk :=exp<—2nz> (11)

Formula (11) is only approximatively valid, but nu-
merically the following error estimate can be given:

- 2
UnUmk _ Ruu(kA)C) = exp < (kAX) )
UplUpy



M. Klein et al. | Int. J. Heat and Fluid Flow 24 (2003) 785-794 789

max <0.001

Tk ul X,
exp(‘;;)‘ D bibi ) 3 b
J

j=—N+k j=—N

for N>2n and n=2,...,100 (12)

That means the support N should be large enough to
capture twice the length scale which anyway makes
sense because otherwise the correlation is truncated to
zero before approaching the x-axis. If a spatial depen-
dence of the b, is allowed it is even possible to vary the
length scale spatially, for example in a wall bounded
flow. Normally we generated the inflow data on the fly,
but alternatively it would be also possible to store a
large volume of data and to convect it through the in-
flow plane by applying Taylors hypothesis. More details
as well as some validation results of the procedure can
be found in Klein et al. (2003).

4. Results and discussion

In this section we discuss some computational and
physical aspects of the plane jet. Starting with the in-
fluence of the inflow length scale, we proceed with the
far field results of the jet. At the end of the section we
study in detail the effects of the variation of the Rey-
nolds number on the jet evolution.

4.1. Influence of the inflow length scale

Many experimental studies use a contraction nozzle
and therefore report a top-hat profile for the mean ve-
locity. In combination with the inflow generator this
yields a realistic inflow boundary condition, as we will
see below. For the simulations carried out here, velocity
profiles with a fluctuation level of 2% have been gener-
ated by the procedure presented above. These fluctua-
tions were superimposed to the smoothed top-hat profile
4).

Due to the observation (see Klein et al., 2001) that the
distribution of the kinetic energy from the inflow data
onto different length scales has an important impact on
the evolution of the jet at least in the near field, we
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studied this influence systematically. Under the as-
sumption that the autocorrelation function has a
Gaussian shape, it is now very simple to produce inflow
data with different length scales. In Fig. 4 the length
scale has been varied in the range from 1/6D, 2/6D,
4/6D. As expected the jet spreading rate increases, the
more kinetic energy is put into the large scales.

Comparing the axial evolution of the longitudinal
fluctuations in Fig. 4 with the random fluctuations in
Fig. 3 it is obvious that the data from the inflow gen-
erator is much closer to real turbulence.

4.2. Far field results

It is often assumed that the jet reaches downstream a
universal self-similar state. Therefore the lateral profiles
in this section are as usual normalized with the local
centerline velocity Uy and the jet half-width z;,. We
summarize in the following the far field results for the
turbulent jet with Re = 4000. The length scales at the
inflow have been set to 0.4D, 0.125D, 0.125D in x,y,z
direction according to the channel flow measurements
reported in Hinze (1959). Fig. 5 shows the broadband
inflow forcing at x/D = 0 together with temporal energy
spectra for Re = 4000 at two further characteristic axial
positions: The coherent structures in the near field at
x/D = 2.5 (see also Fig. 10) and a spectrum in the self-
similar region of the jet at x/D = 12.5.

All data has been averaged over approximately 10
flow through times based on a mean axial velocity. Be-
cause the outflow boundary conditions have an up-
stream influence on the jet, all quantities are evaluated
only for x/D < 15.

We compare our results with the DNS data of Stanley
et al. (2002) and the experimental data of Gutmark and
Wygnanski (1976) and Namer and Otﬁgen (1988), de-
noted in the following SSM, NO and GW. As already
pointed out in Bonnet et al. (1998), the results of GW
for the plane jet, must be cast in doubt at least for the
longitudinal fluctuations (compare also Fig. 7(left)).
Unfortunately in the newer data set of NO performed
for Re = 1000-7000 compared to Re = 30000 in GW,

Fig. 4. Influence of different length scales (imposed at the inflow) on the development of a plane jet: velocity decay (left), velocity fluctuations (right).
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Fig. 5. Temporal energy spectrum for Re = 4000 at characteristic axial
positions.

the fluctuations v;ms, wims as well as the shear stress are
not included. Although our numerical findings lie very
well in the range of the experimental data, it must be
mentioned and has to be kept in mind, that the experi-
mental scatter is very large (see Table 1). For example
the values for the velocity decay constant C, reach from
0.093 to 0.22.

Fig. 6 shows the axial mean velocity. It is very well
represented by a Gaussian profile

e -e(2)]

Ucl
with C ~ 0.683 and agrees well with the data of NO.
Compared to GW a notable discrepancy is found for

= exp (13)
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z/z1» = 1.5. Also the lateral mean velocity is reasonably
represented by the experimental data of GW, although
the profiles do not yet collapse to a single curve. For the
longitudinal velocity fluctuations shown in Fig. 7(left),
the situation is different. The DNS supports the obser-
vation mentioned in Bonnet et al. (1998) that the results
from GW were considerably overestimated, especially in
the shear layer. A good agreement with NO is found.
Whereas the centerline value of the spanwise fluctua-
tions is quite well predicted, an overshoot of v’/ in the
shear layer can be seen, which is also apparent in the
data of Stanley et al. (2002).

Fig. 8(left) shows the lateral velocity fluctuation as
well as the shear stress (right). They agree reasonably
well with the experimental findings of GW. Comparing
the first mentioned quantity to GW, it can be seen that
w'w decreases slower with increasing z/z; ;. This is also
observed in the data of Stanley et al. (2002), but it has to
be mentioned that their centerline value is approxi-
mately 30% higher. The deviation between both DNS
data sets is perhaps due to different inflow conditions or
due to the fact that Stanley et al. (2002) consider a plane
jet with a weak coflow.

4.3. Variation of the Reynolds number

It is for several reasons interesting to study the in-
fluence of the Reynolds number on the evolution of a
plane jet. First the Reynolds number dependence might
be a possible explanation for the large scatter in the

Table 1
Axial and lateral centerline fluctuation level uyms, wims, velocity decay C,, spreading rate C,
Author urms/UU Wrms/UO Cu CZ
Gutmark and Wygnanski (1976) 0.27 0.206 0.188 0.1
Thomas and Goldschmidt (1986) 0.27 - 0.22 0.1
Hussain and Clark (1977) 0.19 - 0.123 0.118
Namer and Otiigen (1988) 0.22 - 0.175 0.098
Ramaprian and Chandrasekhara (1985) 0.2 0.17 0.093 0.112
Thomas and Prakash (1991) 0.245 0.22 0.22 0.11
DNS Stanley et al. (2002) 0.255 0.264 0.201 0.092
Present DNS results (Re = 6000) 0.23 0.20 0.178 0.106
| 1 | | I
a:/ID: f2.5 z/D =125
i T =15.0 ———-- . — T =15.0 ———-- .
1 D =15.0 0.04 D =15.0
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Fig. 6. Mean velocity in axial and lateral direction.
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Fig. 8. Fluctuations in lateral direction and shear stress.

experimental data. Secondly, experimental data or DNS
data is frequently used for calibration, development and
examination of turbulence closures models, which often
contain no Re-dependence. Therefore such data could be
useful for determining the range where these models can
be valid or alternatively could provide necessary infor-
mation for a model refinement. We examine first the
variation of the global jet characteristics and then con-
sider some spectral properties of the flow for different
Reynolds numbers.

First we fitted the parameter C in (13) to our com-
puted mean longitudinal velocity profiles. Table 2 shows
that independent of the Reynolds number u/Uy is clo-
sely approximated by formula (13) with C ~ In 2. This is
the same finding as reported in NO.

The profiles presented in the last section are as usual
normalized with U and z; 5, due to the assumption that
the jet reaches a self-similar state. Furthermore it is
believed that the centerline velocity decays like

2

Uo X

=) =q (— e ) 14
< Ucl > u D u,0 ( )
Table 2
Fitted coefficient C, see formula (13)

Re 1000 2000 4000 6000

C 0.695 0.677 0.692 0.668

and the jet spreads linearly with x, i.e.

212 X
D _CZ(D Cz,0)~ (15)
To assess the absolute error it is therefore necessary to
compare the velocity decay constant C, and the jet
spreading rate C, to experimental data. Fig. 9(left)
shows that over the whole Reynolds number range the
agreement is very satisfactory and that both constants
decrease monotonically with increasing Reynolds num-
ber. It must be mentioned that the flow has not yet
reached the fully self-similar state for the lowest Rey-
nolds number. Furthermore it is evident that, concern-
ing these quantities, the flow is close to a converged state
although it is not yet reached. Comparing our spreading
rate C, with the numerical findings of Stanley et al.
(2002) (see Table 1), their value appears a little bit low
(compared for example with GW), especially with re-
spect to the fact that C, decreases with increasing Re and
that most of the experiments are performed at higher Re.
The constants C,o and C. in (14) and (15) respec-
tively are called the virtual origin of the jet. NO found
that the dependence of C,( was not systematic and
varied in the range from -4.2,...,1.3. C.o was ap-
proximately 6 for all Reynolds numbers except for
Re = 6000 in which case the value dropped to 0.6. Our
observations showed (see Fig. 9(right)) that basically the
virtual origin approaches more and more the nozzle with
increasing Reynolds number. Therefore it must be
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Fig. 9. Jet spreading rate and velocity decay constant for different Reynolds numbers (left). Virtual origin of the jet according to formula (14) and (15)
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Fig. 10. Spatial power spectrum at the jet axis for different Reynolds numbers (left). Temporal energy spectrum for different Reynolds numbers,

evaluated at x/D = 2.5 in the shear layer (right).

concluded that the scatter in the experimental data is
due to a change in the inflow conditions corresponding
to different Reynolds numbers, which are held constant
in our simulations.

Let us now draw our attention to some spectral
characteristics of the plane jet. Fig. 10(left) shows a
spatial power spectrum. The velocity signal in the range
3.5<x/D<17.5 is multiplied by a Hanning Window,
Fourier transformed and averaged over 100 samples.
The inertial subrange and the dissipation range can
clearly be seen. Furthermore it is interesting to observe
that the spectrum approaches, in the inertial subrange,
the theoretical limit of >/ when increasing the Rey-
nolds number.

There is strong evidence that the initial jet growth is
controlled by large vortical structures which are formed
near the boundaries of the jet (see for example Thomas
and Goldschmidt, 1986). Therefore as in Namer and
Otiigen (1988) we evaluated temporal power spectra in
the shear layer at the position x/D = 2.5. Normalizing

the most amplified frequency with the jet exit velocity
and the nozzle diameter Namer and Otiigen (1988) ob-
tained a Strouhal number St = fD/Up of 0.273 constant
over the whole Reynolds number range. The meaning of
this finding is that the number of vortices formed per
unit length is unaffected by the Reynolds number. This
is confirmed quantitatively and qualitatively by our
simulations (see Fig. 10(right)).

The existence of large coherent structures becomes
also obvious from the autocorrelation functions in the
near field of the jet shown in Fig. 11(left). Strong un-
dershoots can be seen until the end of the potential core
at approximately x/D = 5. In the far field of the jet the
autocorrelation functions collapse onto a single curve
when normalized with the jet half-width (see Fig.
11(right)). The integration of R,, yields a longitudinal
length scale of approximately L, /z;, = 0.56. Compared
to the findings of GW L,/z/, = 0.47, the agreement is
satisfactory. Stanley et al. (2002) report a higher value of
LX/ZI/Z = 0.65.
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Fig. 11. Autocorrelation functions with streamwise (normalized) separation at different axial positions.

5. Conclusions

A direct numerical simulation of plane turbulent jets
at moderate Reynolds numbers has been performed.
Special attention has been drawn on the influence of the
Reynolds number as well as the inflow conditions on the
evolution of the plane jet. Concerning the first param-
eter it is observed that the flow is not independent of the
Reynolds number but close to a converged state at
Re = 6000, at least for the quantities under consider-
ation in this work. The influence of the inflow conditions
on the jet characteristics is so strong and long living
(here observed until the end of the computational do-
main) that, for example, the value of the jet spreading
rate can lie between 0.08 for a channel flow profile and
more than 0.106 for the smoothed top-hat profile to-
gether with adequate fluctuations, generated by a newly
developed method. Both facts together can explain a lot
of the experimental scatter observed in the literature. A
consequence is that more care must be taken in future,
when comparing DNS results with LES results which
were not performed with the same code and the same
boundary conditions or when comparing simulation
results with experimental or numerical findings at dif-
ferent Reynolds numbers. Furthermore there is strong
need for a thorough documentation of the inflow con-
ditions for future experimental and numerical work,
which goes beyond mean quantities. Although these
conclusions are drawn for the case of a plane jet, the
results are probably also valid for other kind of flows.
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