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Abstract

Free jets represent a benchmark for research into the physics of turbulent fluid flow and are furthermore of great interest for

many engineering applications. In the present work we investigate the influence of the Reynolds number on the evolution of a plane

jet. The effect on the global jet characteristics, as well as on some spectral properties, is particularly addressed. A strong influence on

the jet evolution is found for Re6 6000, but also that the jet is close to a converged state for higher Reynolds numbers. Although it is

believed that the jet reaches a universal self-similar state, there was early evidence that the inflow conditions can have a downstream

effect on the development of the turbulent flow field. Therefore some results, concerning the influence of inflow boundary conditions

on the simulations, are also reported.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Free jets represent a benchmark for research into the

physics of turbulent fluid flow, because they are used for

the evaluation of physical models. Furthermore they are
of great interest for many engineering applications (jet

propulsion, combustion chambers, etc.). Therefore tur-

bulent jets have been the subject of many experimental

and numerical works for over 40 years. For the axi-

symmetric jet the very extensive measurements of

Wygnanski and Fiedler (1975) have been the standard

round jet data for a long time. Later it was discovered

by using numerical methods that the far field data of
Wygnanski and Fiedler have not satisfied the constraint

of the integrated axial momentum equation and that this

discrepancy has been due to the semi-confined enclosure

(Hussein et al., 1994). Nearly two decades later detailed

measurements with more suitable measurement tech-

niques have been carried out (Panchapakesan and
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Lumley, 1993; Hussein et al., 1994). In contrast to the

round jet, according to Bonnet et al. (1998), detailed

results newer than those from Gutmark and Wygnanski

(1976) (denoted GW in the following) are not available

for the plane jet, but in view of the above mentioned
findings for the axisymmetric jet, the data of GW must

be also cast in doubt.

There is little work about free jets at moderate Rey-

nolds numbers, although it is for several reasons inter-

esting to study the influence of the Reynolds number on

the evolution of a plane jet. First the Reynolds number

dependence might be a possible explanation for the large

scatter in the experimental data. Secondly, experimental
data or DNS data is frequently used for calibration,

development and examination of turbulence closures

models, which contain often no Re-dependence. There-
fore Reynolds-dependant data could be useful (1) for

determining the range where these models can be valid

or (2) alternatively provide necessary information for a

model refinement. From this point of view it is of great

importance to be able to predict very well the flow field
evolution and the distribution of the mixing field in such

a configuration.

An overview of the computational studies concerning

this flow can be found in the work of Stanley et al.
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Fig. 1. Sketch of the flow.
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(2002), who published a study of the flow field evolution

and mixing in a planar turbulent jet at Re ¼ 3000, using

DNS. The inflow conditions were generated by a pro-

cedure based on inverse Fourier transform.
Based on a newer method of generating realistic in-

flow conditions presented in Klein et al. (2003), the

present work extends previous simulations by varying

the Reynolds number.

In the following section we recall the governing

equations and the numerical technique needed for the

simulations. After that the new method of generation of

artificial inflow data is summarized in Section 3. In the
main part of the paper (Section 4) we then discuss

computational and physical aspects of the plane jet.

Starting with the influence of the inflow conditions, we

proceed with the far field results of the jet and present at

the end of the section some results reflecting the effects

of Reynolds number variations. Finally some conclu-

sions will close the paper.
2. Governing equations and numerical technique

The governing equations for the problem to be in-

vestigated here, are the conservation equations of mass

and momentum in their instantaneous, local form:
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The incompressible Navier–Stokes-equations are solved
by using a finite volume technique on a cartesian mesh.

The variables are located on a staggered grid. For spa-

tial discretization central differences are used. Temporal

discretization is an explicit third order Runge–Kutta-

method. The Poisson equation is inverted by using a

direct fast elliptic solver.

The turbulent plane jet is simulated with a Reynolds

number Re ¼ U0D=m in the range from 1000 to 6000,
where U0 denotes the bulk velocity at the inlet, D the
Fig. 2. Autocorrelation functions in homogenous direction at the last axial po

mean velocity and mean velocity fluctuations (right).
nozzle width and m the kinematic viscosity. A sketch of

the flow can be seen in Fig. 1 together with the definition

of the jet half-width z1=2 and the centerline velocity Ucl.

The extension of the computational domain in axial (x),
homogenous (y) and vertical (z) direction is 20D� 8D�
20D. The spanwise box size was estimated a priori using

the experimental data of GW

z1=2 � 0:1D; Lx=z1=2 ¼ 0:47 ð3Þ
yielding an integral length scale at the outflow plane of

approximately 1D. Therefore the spanwise box size

should be large enough to capture even the largest
scales. This is confirmed a posteriori in Fig. 2(left).

Compared with the computational box of Stanley et al.

(2002) we added some safety overhead.

The computational domain is resolved with 360�
128� 512� 23.4� 106 grid points. In vertical direction

the region �4:56 z=D6 4:5 is resolved with 50 cells per

diameter and the grid is stretched at the lateral bound-

aries. In x and y direction the grid is equidistant. This
yields in the ‘‘core’’ region a resolution of Dx=D ¼ 1=18,
Dy=D ¼ 1=16 and Dz=D ¼ 1=50. The finer grid spacing

in z direction is required to resolve well the shear layer,

especially in the near nozzle region. The same grid is

used for all simulations in order to be able to use exactly

the same inflow data. Because we performed not only

one DNS but several parameter variations, we had to

reduce the amount of stored data (the complete velocity
and pressure field for one time step takes in single pre-

cision 378 MB of memory). Therefore we are not able to
sition (x=D ¼ 15) which is used for evaluation (left). Inflow profiles for
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estimate the complete dissipation tensor. Using the iso-

tropic assumption e ¼ 15mðou0=oxÞ2 we obtained for

Re ¼ 4000 the estimate gmin=D ¼ 0:008 at x=D � 7. The

values for all other cases can be found using the proper
Reynolds number scaling law, where it has to be men-

tioned that the maximum dissipation occurs closer to the

nozzle, the higher the Reynolds number. Our findings

agree astonishingly good with the results of Stanley et al.

(2002), where the full dissipation tensor is evaluated.

The simulations are performed for 13 flow through

times based on an averaged axial centerline velocity. All

statistics are taken over 10 flow time units. The CPU
time for one simulation is approximately 800 h on an

Intel P4.

At the outflow, Neumann boundary conditions for

the velocity and the pressure are prescribed, negative

velocities are clipped. According to our experience, no

notable difference can (in this case) be seen between the

results obtained with Neumann boundary conditions

and the results obtained with a convective outflow
condition. Because the convective outflow condition

yielded furthermore stability problems for the first time

steps, where the flow had not reached a statistically

stable state, we used simply Neumann boundary con-

ditions. Setting the pressure to zero at the top and the

bottom boundaries and interpolating the tangential ve-

locities constantly allows for mass entrainment. Periodic

boundary conditions are applied in the homogenous
direction. At the inflow boundary the velocity is set to

zero outside the nozzle. Thomas and Goldschmidt

(1986) report that the velocity profile in the near nozzle

region is closely approximated by a hyperbolic-tangent

profile. For this reason inside the nozzle the mean ve-

locity profile has been chosen according to

U ¼ U0

2
þ U0

2
tanh

�jzj þ 0:5D
2h

� �
; V ¼ W ¼ 0; ð4Þ

where h is the momentum thickness and has been set to

D=20 as in Ribault et al. (1999). Because no reliable

information about the profile of the velocity fluctuations

close to the nozzle was available we used simply a top-

hat profile withffiffiffiffiffiffiffi
u0u0

p
=Ucl ¼

ffiffiffiffiffiffiffi
v0v0

p
=Ucl ¼

ffiffiffiffiffiffiffiffiffi
w0w0

p
=Ucl ¼ 0:02: ð5Þ

The inflow profiles are also plotted in Fig. 2(right). In

contrast to Stanley et al. (2002) the fluctuations have

been generated by a new procedure presented in Klein

et al. (2003). For the self-consistency of this paper, we

summarize the method in the next section.
Fig. 3. Influence of conventional inflow boundary conditions on the

simulation of a plane jet. Comparison between inflow with zero fluc-

tuations, random fluctuations and fluctuations from an external

channel flow DNS.
3. Generation of artificial inflow data

In the following we provide only a short introduction

to the generation of inlet data for spatially developing

simulations. For more details see e.g. Lund et al. (1998),
Stanley and Sarkar (2000), Klein et al. (2003) and Glaze

and Frankel (in press).

The conventional way to generate turbulent inflow

data is to take a mean velocity profile with superim-
posed fluctuations. Using the numerical technique de-

scribed in Section 2, a simulation of a plane jet at

Reynolds numbers varying in the range from 1000 to

6000 has been performed in Klein et al. (2000). Al-

though the results compared well with experimental data

for self-similarity profiles, the jet spreading rate was

under-predicted by approximately 20%. The most

probable reason for this discrepancy seemed to be the
influence of non-realistic inflow conditions.

In Fig. 3 we compare the axial evolution of the lon-

gitudinal velocity fluctuations from three simulations,

which differ only in the inflow boundary conditions. A

mean velocity profile from a channel flow simulations

has been used with superimposed (1) zero fluctuations,

(2) random fluctuations and (3) fluctuations from an

external channel flow DNS.
It can be observed that due to a lack of energy in the

low wave number range, the pseudo turbulence is im-

mediately damped to zero, and the result is identical

with a laminar inflow. Therefore this procedure is

completely wrong. This explains a certain independence

of the fluctuation level on the simulation results, when

using �white noise� fluctuations. In consideration of this

fact the choice of laminar inflow conditions seems to be
superior to the random fluctuation approach. Addi-

tionally if an iterative solver is used, the number of it-

erations can be reduced dramatically (see for example

Mengler et al., 2001). The use of real turbulence, e.g.

from an auxiliary simulation, at the inflow shows a

complete different behavior. In this case the fluctuation

level is maintained and increases up to the end of the

potential core where the shear layer has penetrated into
the jet up to the centerline. Unfortunately the spreading

rate remains still considerably under-predicted.

As we have seen the direct numerical simulation of a

plane jet requires an elaborated method for producing
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realistic inflow data. It is very difficult to specify the

meaning of good inflow data, but a simple approach is

to produce a velocity signal which has certain statistical

properties, which may for example be known from ex-
perimental data. Such quantities could be: mean values,

fluctuations and cross correlations, higher order mo-

ments, length and time scales, energy spectra, etc. Klein

et al. (2003) developed a method which can be splitted in

two parts.

1. First a provisional three-dimensional signal Ui is gen-

erated for each velocity component which possesses a
prescribed two-point statistic (length scale, energy

spectra). If there would only be the need to obtain

homogenous turbulence the procedure could stop

here.

2. If cross correlations between the different velocity

components have to be taken into account a method

proposed by Lund et al. (1998) can be used. First de-

fine Ui so that Ui ¼ 0, UiUj ¼ dij and then perform
the following transformation: ui ¼ �uui þ aijUj, where

ðaijÞ ¼

ðR11Þ1=2 0 0

R21

a11
ðR22 � a221Þ

1=2
0

R31

a11

ðR32 � a21a31Þ
a22

ðR33 � a231 � a232Þ
1=2

0
BBBBB@

1
CCCCCA:

Here ð�Þ denotes an appropriate averaging procedure,

Rij the correlation tensor which may be known from
experimental data and ui the finally needed velocity

signal.

A method for the solution of part 1 has first been

proposed by Lee et al. (1992). The idea is based on an

inverse Fourier transform but has, according to our

opinion some disadvantages which will be overcome by

the new method based on digital filtering of random
data, following the work of Nobach (1997).

Guideline for the development was the practicability,

which means that only statistical quantities should be

used which can be obtained with reasonable experi-

mental expense, or alternatively from heuristical esti-

mates. Therefore correlation functions respectively

length scales seem to be an adequate alternative to a

three-dimensional energy spectrum.
In order to create two-point correlations, let rm be a

series of random data with rm ¼ 0, rmrm ¼ 1, then

um ¼
XN
n¼�N

bnrmþn ð6Þ

defines a convolution or a digital linear non-recursive

filter. The bn are the filter coefficients and N is connected

to the support of the filter. Because rmrn ¼ 0 for m 6¼ n it

follows easily
umumþk

umum
¼

XN
j¼�Nþk

bjbj�k

,XN
j¼�N

b2j ; ð7Þ

that means a relation between the filter coefficients and

the autocorrelation function of the um. Two questions

have to be answered: How can this procedure be ex-

tended to three dimensions and how is it possible to

invert formula (7). By the convolution of three one-di-

mensional filters one obtains a three-dimensional filter

that answers the first question:

bijk ¼ bi � bj � bk ð8Þ

To find an answer to the second problem, lets suppose

an autocorrelation function is given, i.e. umumþk=umum.
Then it is possible to obtain the coefficients bn by a
multidimensional Newton method. The procedure can

be taken from a standard textbook and needs no further

comment.

In contrast to the knowledge of the full autocorrela-

tion function one has often an intuitive feeling for the

length scale of a flow. Therefore we propose a further

simplification, which is especially preferable from an

engineering point of view: instead of Ruuðx; rÞ, where r
denotes a distance vector and r ¼ jrj, only an integral

value, the length scale, should be prescribed. This im-

plies the assumption of a special shape of Ruu. For the

case of homogeneous turbulence in a late stage, it can be

shown (Batchelor, 1953) that the autocorrelation func-

tion takes the form

Ruuðr; 0; 0Þ ¼ exp

�
� p

4

r2

L2

�
ðwith L ¼ LðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmðt � t0Þ

p
Þ ð9Þ

This choice fulfills some basic properties like Ruuð0Þ ¼ 1,

limr!1 RuuðrÞ ¼ 0, and allows an easy calculation of the

length scale. In particular an explicit representation of

the filter coefficients has been found. Suppose Dx is the

grid spacing and L ¼ nDx the desired length scale, then

we can set

umumþk

umum
¼ RuuðkDxÞ ¼ exp

 
� p

4

ðkDxÞ2

ðnDxÞ2

!

¼ exp

�
� p

4

k2

n2

�
ð10Þ

with the filter coefficients

bk � ~bbk
XN
j¼�N

~bb2j

 !1=2,
and

~bbk :¼ exp

�
� p

2

k2

n2

�
ð11Þ

Formula (11) is only approximatively valid, but nu-

merically the following error estimate can be given:
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max
k

exp

������ � p
4

k2

n2

�
�
XN

j¼�Nþk

bjbj�k

XN
j¼�N

b2j

, �����6 0:001

for N P 2n and n ¼ 2; . . . ; 100 ð12Þ

That means the support N should be large enough to
capture twice the length scale which anyway makes

sense because otherwise the correlation is truncated to

zero before approaching the x-axis. If a spatial depen-

dence of the bk is allowed it is even possible to vary the

length scale spatially, for example in a wall bounded

flow. Normally we generated the inflow data on the fly,

but alternatively it would be also possible to store a

large volume of data and to convect it through the in-
flow plane by applying Taylors hypothesis. More details

as well as some validation results of the procedure can

be found in Klein et al. (2003).
4. Results and discussion

In this section we discuss some computational and
physical aspects of the plane jet. Starting with the in-

fluence of the inflow length scale, we proceed with the

far field results of the jet. At the end of the section we

study in detail the effects of the variation of the Rey-

nolds number on the jet evolution.

4.1. Influence of the inflow length scale

Many experimental studies use a contraction nozzle

and therefore report a top-hat profile for the mean ve-

locity. In combination with the inflow generator this

yields a realistic inflow boundary condition, as we will

see below. For the simulations carried out here, velocity

profiles with a fluctuation level of 2% have been gener-

ated by the procedure presented above. These fluctua-

tions were superimposed to the smoothed top-hat profile
(4).

Due to the observation (see Klein et al., 2001) that the

distribution of the kinetic energy from the inflow data

onto different length scales has an important impact on

the evolution of the jet at least in the near field, we
Fig. 4. Influence of different length scales (imposed at the inflow) on the devel
studied this influence systematically. Under the as-

sumption that the autocorrelation function has a

Gaussian shape, it is now very simple to produce inflow

data with different length scales. In Fig. 4 the length
scale has been varied in the range from 1=6D, 2=6D,
4=6D. As expected the jet spreading rate increases, the

more kinetic energy is put into the large scales.

Comparing the axial evolution of the longitudinal

fluctuations in Fig. 4 with the random fluctuations in

Fig. 3 it is obvious that the data from the inflow gen-

erator is much closer to real turbulence.
4.2. Far field results

It is often assumed that the jet reaches downstream a

universal self-similar state. Therefore the lateral profiles

in this section are as usual normalized with the local

centerline velocity Ucl and the jet half-width z1=2. We

summarize in the following the far field results for the

turbulent jet with Re ¼ 4000. The length scales at the
inflow have been set to 0:4D, 0:125D, 0:125D in x; y; z
direction according to the channel flow measurements

reported in Hinze (1959). Fig. 5 shows the broadband

inflow forcing at x=D ¼ 0 together with temporal energy

spectra for Re ¼ 4000 at two further characteristic axial

positions: The coherent structures in the near field at

x=D ¼ 2:5 (see also Fig. 10) and a spectrum in the self-

similar region of the jet at x=D ¼ 12:5.
All data has been averaged over approximately 10

flow through times based on a mean axial velocity. Be-

cause the outflow boundary conditions have an up-

stream influence on the jet, all quantities are evaluated

only for x=D6 15.

We compare our results with the DNS data of Stanley

et al. (2002) and the experimental data of Gutmark and

Wygnanski (1976) and Namer and €OOt€uugen (1988), de-
noted in the following SSM, N€OO and GW. As already

pointed out in Bonnet et al. (1998), the results of GW

for the plane jet, must be cast in doubt at least for the

longitudinal fluctuations (compare also Fig. 7(left)).

Unfortunately in the newer data set of N€OO performed

for Re ¼ 1000–7000 compared to Re ¼ 30000 in GW,
opment of a plane jet: velocity decay (left), velocity fluctuations (right).



Fig. 5. Temporal energy spectrum for Re ¼ 4000 at characteristic axial

positions.
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the fluctuations vrms, wrms as well as the shear stress are

not included. Although our numerical findings lie very

well in the range of the experimental data, it must be

mentioned and has to be kept in mind, that the experi-
mental scatter is very large (see Table 1). For example

the values for the velocity decay constant Cu reach from

0.093 to 0.22.

Fig. 6 shows the axial mean velocity. It is very well

represented by a Gaussian profile

UðzÞ
Ucl

¼ exp

"
� C

z
z1=2

� �2
#

ð13Þ

with C � 0:683 and agrees well with the data of N€OO.

Compared to GW a notable discrepancy is found for
Table 1

Axial and lateral centerline fluctuation level urms, wrms, velocity decay Cu, sp

Author urms=U0

Gutmark and Wygnanski (1976) 0.27

Thomas and Goldschmidt (1986) 0.27

Hussain and Clark (1977) 0.19

Namer and €OOt€uugen (1988) 0.22

Ramaprian and Chandrasekhara (1985) 0.2

Thomas and Prakash (1991) 0.245

DNS Stanley et al. (2002) 0.255

Present DNS results (Re ¼ 6000) 0.23

Fig. 6. Mean velocity in axia
z=z1=2 P 1:5. Also the lateral mean velocity is reasonably

represented by the experimental data of GW, although

the profiles do not yet collapse to a single curve. For the

longitudinal velocity fluctuations shown in Fig. 7(left),
the situation is different. The DNS supports the obser-

vation mentioned in Bonnet et al. (1998) that the results

from GW were considerably overestimated, especially in

the shear layer. A good agreement with N€OO is found.

Whereas the centerline value of the spanwise fluctua-

tions is quite well predicted, an overshoot of v0v0 in the

shear layer can be seen, which is also apparent in the

data of Stanley et al. (2002).
Fig. 8(left) shows the lateral velocity fluctuation as

well as the shear stress (right). They agree reasonably

well with the experimental findings of GW. Comparing

the first mentioned quantity to GW, it can be seen that

w0w0 decreases slower with increasing z=z1=2. This is also
observed in the data of Stanley et al. (2002), but it has to

be mentioned that their centerline value is approxi-

mately 30% higher. The deviation between both DNS
data sets is perhaps due to different inflow conditions or

due to the fact that Stanley et al. (2002) consider a plane

jet with a weak coflow.

4.3. Variation of the Reynolds number

It is for several reasons interesting to study the in-

fluence of the Reynolds number on the evolution of a
plane jet. First the Reynolds number dependence might

be a possible explanation for the large scatter in the
reading rate Cz

wrms=U0 Cu Cz

0.206 0.188 0.1

– 0.22 0.1

– 0.123 0.118

– 0.175 0.098

0.17 0.093 0.112

0.22 0.22 0.11

0.264 0.201 0.092

0.20 0.178 0.106

l and lateral direction.



Fig. 8. Fluctuations in lateral direction and shear stress.

Fig. 7. Fluctuations in axial and homogeneous direction.
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experimental data. Secondly, experimental data or DNS

data is frequently used for calibration, development and

examination of turbulence closures models, which often

contain no Re-dependence. Therefore such data could be
useful for determining the range where these models can

be valid or alternatively could provide necessary infor-

mation for a model refinement. We examine first the

variation of the global jet characteristics and then con-

sider some spectral properties of the flow for different

Reynolds numbers.

First we fitted the parameter C in (13) to our com-

puted mean longitudinal velocity profiles. Table 2 shows
that independent of the Reynolds number u=Ucl is clo-

sely approximated by formula (13) with C � ln 2. This is

the same finding as reported in N€OO.

The profiles presented in the last section are as usual

normalized with Ucl and z1=2, due to the assumption that

the jet reaches a self-similar state. Furthermore it is

believed that the centerline velocity decays like

U0

Ucl

� �2

¼ Cu
x
D

�
� Cu;0

�
ð14Þ
Table 2

Fitted coefficient C, see formula (13)

Re 1000 2000 4000 6000

C 0.695 0.677 0.692 0.668
and the jet spreads linearly with x, i.e.
z1=2
D

¼ Cz
x
D

�
� Cz;0

�
: ð15Þ

To assess the absolute error it is therefore necessary to

compare the velocity decay constant Cu and the jet

spreading rate Cz to experimental data. Fig. 9(left)

shows that over the whole Reynolds number range the

agreement is very satisfactory and that both constants
decrease monotonically with increasing Reynolds num-

ber. It must be mentioned that the flow has not yet

reached the fully self-similar state for the lowest Rey-

nolds number. Furthermore it is evident that, concern-

ing these quantities, the flow is close to a converged state

although it is not yet reached. Comparing our spreading

rate Cz with the numerical findings of Stanley et al.

(2002) (see Table 1), their value appears a little bit low
(compared for example with GW), especially with re-

spect to the fact that Cz decreases with increasing Re and
that most of the experiments are performed at higher Re.

The constants Cu;0 and Cz;0 in (14) and (15) respec-

tively are called the virtual origin of the jet. N€OO found

that the dependence of Cu;0 was not systematic and

varied in the range from )4.2, . . . , 1.3. Cz;0 was ap-

proximately 6 for all Reynolds numbers except for
Re ¼ 6000 in which case the value dropped to 0.6. Our

observations showed (see Fig. 9(right)) that basically the

virtual origin approaches more and more the nozzle with

increasing Reynolds number. Therefore it must be



Fig. 9. Jet spreading rate and velocity decay constant for different Reynolds numbers (left). Virtual origin of the jet according to formula (14) and (15)

respectively (right).

Fig. 10. Spatial power spectrum at the jet axis for different Reynolds numbers (left). Temporal energy spectrum for different Reynolds numbers,

evaluated at x=D ¼ 2:5 in the shear layer (right).

792 M. Klein et al. / Int. J. Heat and Fluid Flow 24 (2003) 785–794
concluded that the scatter in the experimental data is

due to a change in the inflow conditions corresponding

to different Reynolds numbers, which are held constant

in our simulations.

Let us now draw our attention to some spectral

characteristics of the plane jet. Fig. 10(left) shows a

spatial power spectrum. The velocity signal in the range

3:56 x=D6 17:5 is multiplied by a Hanning Window,
Fourier transformed and averaged over 100 samples.

The inertial subrange and the dissipation range can

clearly be seen. Furthermore it is interesting to observe

that the spectrum approaches, in the inertial subrange,

the theoretical limit of k�5=3 when increasing the Rey-

nolds number.

There is strong evidence that the initial jet growth is

controlled by large vortical structures which are formed
near the boundaries of the jet (see for example Thomas

and Goldschmidt, 1986). Therefore as in Namer and
€OOt€uugen (1988) we evaluated temporal power spectra in

the shear layer at the position x=D ¼ 2:5. Normalizing
the most amplified frequency with the jet exit velocity

and the nozzle diameter Namer and €OOt€uugen (1988) ob-

tained a Strouhal number St ¼ fD=U0 of 0.273 constant

over the whole Reynolds number range. The meaning of

this finding is that the number of vortices formed per

unit length is unaffected by the Reynolds number. This

is confirmed quantitatively and qualitatively by our

simulations (see Fig. 10(right)).
The existence of large coherent structures becomes

also obvious from the autocorrelation functions in the

near field of the jet shown in Fig. 11(left). Strong un-

dershoots can be seen until the end of the potential core

at approximately x=D ¼ 5. In the far field of the jet the

autocorrelation functions collapse onto a single curve

when normalized with the jet half-width (see Fig.

11(right)). The integration of Ruu yields a longitudinal
length scale of approximately Lx=z1=2 ¼ 0:56. Compared

to the findings of GW Lx=z1=2 ¼ 0:47, the agreement is

satisfactory. Stanley et al. (2002) report a higher value of

Lx=z1=2 ¼ 0:65.



Fig. 11. Autocorrelation functions with streamwise (normalized) separation at different axial positions.
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5. Conclusions

A direct numerical simulation of plane turbulent jets

at moderate Reynolds numbers has been performed.

Special attention has been drawn on the influence of the
Reynolds number as well as the inflow conditions on the

evolution of the plane jet. Concerning the first param-

eter it is observed that the flow is not independent of the

Reynolds number but close to a converged state at

Re ¼ 6000, at least for the quantities under consider-

ation in this work. The influence of the inflow conditions

on the jet characteristics is so strong and long living

(here observed until the end of the computational do-
main) that, for example, the value of the jet spreading

rate can lie between 0.08 for a channel flow profile and

more than 0.106 for the smoothed top-hat profile to-

gether with adequate fluctuations, generated by a newly

developed method. Both facts together can explain a lot

of the experimental scatter observed in the literature. A

consequence is that more care must be taken in future,

when comparing DNS results with LES results which
were not performed with the same code and the same

boundary conditions or when comparing simulation

results with experimental or numerical findings at dif-

ferent Reynolds numbers. Furthermore there is strong

need for a thorough documentation of the inflow con-

ditions for future experimental and numerical work,

which goes beyond mean quantities. Although these

conclusions are drawn for the case of a plane jet, the
results are probably also valid for other kind of flows.
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